(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(ok(x)) →+ ok(f(x))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / ok(x)].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)

(3) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(4) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))

S is empty.
Rewrite Strategy: FULL

(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(6) Obligation:

TRS:
Rules:
active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))

Types:
active :: mark:c:X:ok:found → mark:c:X:ok:found
f :: mark:c:X:ok:found → mark:c:X:ok:found
mark :: mark:c:X:ok:found → mark:c:X:ok:found
top :: mark:c:X:ok:found → top
c :: mark:c:X:ok:found
check :: mark:c:X:ok:found → mark:c:X:ok:found
start :: mark:c:X:ok:found → mark:c:X:ok:found
match :: mark:c:X:ok:found → mark:c:X:ok:found → mark:c:X:ok:found
X :: mark:c:X:ok:found
proper :: mark:c:X:ok:found → mark:c:X:ok:found
ok :: mark:c:X:ok:found → mark:c:X:ok:found
found :: mark:c:X:ok:found → mark:c:X:ok:found
hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found
hole_top2_0 :: top
gen_mark:c:X:ok:found3_0 :: Nat → mark:c:X:ok:found

(7) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
top, check, f, match, proper, active

They will be analysed ascendingly in the following order:
check < top
active < top
f < check
match < check
f < match
f < proper
f < active
proper < match

(8) Obligation:

TRS:
Rules:
active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))

Types:
active :: mark:c:X:ok:found → mark:c:X:ok:found
f :: mark:c:X:ok:found → mark:c:X:ok:found
mark :: mark:c:X:ok:found → mark:c:X:ok:found
top :: mark:c:X:ok:found → top
c :: mark:c:X:ok:found
check :: mark:c:X:ok:found → mark:c:X:ok:found
start :: mark:c:X:ok:found → mark:c:X:ok:found
match :: mark:c:X:ok:found → mark:c:X:ok:found → mark:c:X:ok:found
X :: mark:c:X:ok:found
proper :: mark:c:X:ok:found → mark:c:X:ok:found
ok :: mark:c:X:ok:found → mark:c:X:ok:found
found :: mark:c:X:ok:found → mark:c:X:ok:found
hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found
hole_top2_0 :: top
gen_mark:c:X:ok:found3_0 :: Nat → mark:c:X:ok:found

Generator Equations:
gen_mark:c:X:ok:found3_0(0) ⇔ c
gen_mark:c:X:ok:found3_0(+(x, 1)) ⇔ mark(gen_mark:c:X:ok:found3_0(x))

The following defined symbols remain to be analysed:
f, top, check, match, proper, active

They will be analysed ascendingly in the following order:
check < top
active < top
f < check
match < check
f < match
f < proper
f < active
proper < match

(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Induction Base:
f(gen_mark:c:X:ok:found3_0(+(1, 0)))

Induction Step:
f(gen_mark:c:X:ok:found3_0(+(1, +(n5_0, 1)))) →RΩ(1)
mark(f(gen_mark:c:X:ok:found3_0(+(1, n5_0)))) →IH
mark(*4_0)

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(10) Complex Obligation (BEST)

(11) Obligation:

TRS:
Rules:
active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))

Types:
active :: mark:c:X:ok:found → mark:c:X:ok:found
f :: mark:c:X:ok:found → mark:c:X:ok:found
mark :: mark:c:X:ok:found → mark:c:X:ok:found
top :: mark:c:X:ok:found → top
c :: mark:c:X:ok:found
check :: mark:c:X:ok:found → mark:c:X:ok:found
start :: mark:c:X:ok:found → mark:c:X:ok:found
match :: mark:c:X:ok:found → mark:c:X:ok:found → mark:c:X:ok:found
X :: mark:c:X:ok:found
proper :: mark:c:X:ok:found → mark:c:X:ok:found
ok :: mark:c:X:ok:found → mark:c:X:ok:found
found :: mark:c:X:ok:found → mark:c:X:ok:found
hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found
hole_top2_0 :: top
gen_mark:c:X:ok:found3_0 :: Nat → mark:c:X:ok:found

Lemmas:
f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_mark:c:X:ok:found3_0(0) ⇔ c
gen_mark:c:X:ok:found3_0(+(x, 1)) ⇔ mark(gen_mark:c:X:ok:found3_0(x))

The following defined symbols remain to be analysed:
proper, top, check, match, active

They will be analysed ascendingly in the following order:
check < top
active < top
match < check
proper < match

(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol proper.

(13) Obligation:

TRS:
Rules:
active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))

Types:
active :: mark:c:X:ok:found → mark:c:X:ok:found
f :: mark:c:X:ok:found → mark:c:X:ok:found
mark :: mark:c:X:ok:found → mark:c:X:ok:found
top :: mark:c:X:ok:found → top
c :: mark:c:X:ok:found
check :: mark:c:X:ok:found → mark:c:X:ok:found
start :: mark:c:X:ok:found → mark:c:X:ok:found
match :: mark:c:X:ok:found → mark:c:X:ok:found → mark:c:X:ok:found
X :: mark:c:X:ok:found
proper :: mark:c:X:ok:found → mark:c:X:ok:found
ok :: mark:c:X:ok:found → mark:c:X:ok:found
found :: mark:c:X:ok:found → mark:c:X:ok:found
hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found
hole_top2_0 :: top
gen_mark:c:X:ok:found3_0 :: Nat → mark:c:X:ok:found

Lemmas:
f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_mark:c:X:ok:found3_0(0) ⇔ c
gen_mark:c:X:ok:found3_0(+(x, 1)) ⇔ mark(gen_mark:c:X:ok:found3_0(x))

The following defined symbols remain to be analysed:
match, top, check, active

They will be analysed ascendingly in the following order:
check < top
active < top
match < check

(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol match.

(15) Obligation:

TRS:
Rules:
active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))

Types:
active :: mark:c:X:ok:found → mark:c:X:ok:found
f :: mark:c:X:ok:found → mark:c:X:ok:found
mark :: mark:c:X:ok:found → mark:c:X:ok:found
top :: mark:c:X:ok:found → top
c :: mark:c:X:ok:found
check :: mark:c:X:ok:found → mark:c:X:ok:found
start :: mark:c:X:ok:found → mark:c:X:ok:found
match :: mark:c:X:ok:found → mark:c:X:ok:found → mark:c:X:ok:found
X :: mark:c:X:ok:found
proper :: mark:c:X:ok:found → mark:c:X:ok:found
ok :: mark:c:X:ok:found → mark:c:X:ok:found
found :: mark:c:X:ok:found → mark:c:X:ok:found
hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found
hole_top2_0 :: top
gen_mark:c:X:ok:found3_0 :: Nat → mark:c:X:ok:found

Lemmas:
f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_mark:c:X:ok:found3_0(0) ⇔ c
gen_mark:c:X:ok:found3_0(+(x, 1)) ⇔ mark(gen_mark:c:X:ok:found3_0(x))

The following defined symbols remain to be analysed:
check, top, active

They will be analysed ascendingly in the following order:
check < top
active < top

(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol check.

(17) Obligation:

TRS:
Rules:
active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))

Types:
active :: mark:c:X:ok:found → mark:c:X:ok:found
f :: mark:c:X:ok:found → mark:c:X:ok:found
mark :: mark:c:X:ok:found → mark:c:X:ok:found
top :: mark:c:X:ok:found → top
c :: mark:c:X:ok:found
check :: mark:c:X:ok:found → mark:c:X:ok:found
start :: mark:c:X:ok:found → mark:c:X:ok:found
match :: mark:c:X:ok:found → mark:c:X:ok:found → mark:c:X:ok:found
X :: mark:c:X:ok:found
proper :: mark:c:X:ok:found → mark:c:X:ok:found
ok :: mark:c:X:ok:found → mark:c:X:ok:found
found :: mark:c:X:ok:found → mark:c:X:ok:found
hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found
hole_top2_0 :: top
gen_mark:c:X:ok:found3_0 :: Nat → mark:c:X:ok:found

Lemmas:
f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_mark:c:X:ok:found3_0(0) ⇔ c
gen_mark:c:X:ok:found3_0(+(x, 1)) ⇔ mark(gen_mark:c:X:ok:found3_0(x))

The following defined symbols remain to be analysed:
active, top

They will be analysed ascendingly in the following order:
active < top

(18) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol active.

(19) Obligation:

TRS:
Rules:
active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))

Types:
active :: mark:c:X:ok:found → mark:c:X:ok:found
f :: mark:c:X:ok:found → mark:c:X:ok:found
mark :: mark:c:X:ok:found → mark:c:X:ok:found
top :: mark:c:X:ok:found → top
c :: mark:c:X:ok:found
check :: mark:c:X:ok:found → mark:c:X:ok:found
start :: mark:c:X:ok:found → mark:c:X:ok:found
match :: mark:c:X:ok:found → mark:c:X:ok:found → mark:c:X:ok:found
X :: mark:c:X:ok:found
proper :: mark:c:X:ok:found → mark:c:X:ok:found
ok :: mark:c:X:ok:found → mark:c:X:ok:found
found :: mark:c:X:ok:found → mark:c:X:ok:found
hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found
hole_top2_0 :: top
gen_mark:c:X:ok:found3_0 :: Nat → mark:c:X:ok:found

Lemmas:
f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_mark:c:X:ok:found3_0(0) ⇔ c
gen_mark:c:X:ok:found3_0(+(x, 1)) ⇔ mark(gen_mark:c:X:ok:found3_0(x))

The following defined symbols remain to be analysed:
top

(20) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)

Could not prove a rewrite lemma for the defined symbol top.

(21) Obligation:

TRS:
Rules:
active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))

Types:
active :: mark:c:X:ok:found → mark:c:X:ok:found
f :: mark:c:X:ok:found → mark:c:X:ok:found
mark :: mark:c:X:ok:found → mark:c:X:ok:found
top :: mark:c:X:ok:found → top
c :: mark:c:X:ok:found
check :: mark:c:X:ok:found → mark:c:X:ok:found
start :: mark:c:X:ok:found → mark:c:X:ok:found
match :: mark:c:X:ok:found → mark:c:X:ok:found → mark:c:X:ok:found
X :: mark:c:X:ok:found
proper :: mark:c:X:ok:found → mark:c:X:ok:found
ok :: mark:c:X:ok:found → mark:c:X:ok:found
found :: mark:c:X:ok:found → mark:c:X:ok:found
hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found
hole_top2_0 :: top
gen_mark:c:X:ok:found3_0 :: Nat → mark:c:X:ok:found

Lemmas:
f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_mark:c:X:ok:found3_0(0) ⇔ c
gen_mark:c:X:ok:found3_0(+(x, 1)) ⇔ mark(gen_mark:c:X:ok:found3_0(x))

No more defined symbols left to analyse.

(22) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(23) BOUNDS(n^1, INF)

(24) Obligation:

TRS:
Rules:
active(f(x)) → mark(x)
top(active(c)) → top(mark(c))
top(mark(x)) → top(check(x))
check(f(x)) → f(check(x))
check(x) → start(match(f(X), x))
match(f(x), f(y)) → f(match(x, y))
match(X, x) → proper(x)
proper(c) → ok(c)
proper(f(x)) → f(proper(x))
f(ok(x)) → ok(f(x))
start(ok(x)) → found(x)
f(found(x)) → found(f(x))
top(found(x)) → top(active(x))
active(f(x)) → f(active(x))
f(mark(x)) → mark(f(x))

Types:
active :: mark:c:X:ok:found → mark:c:X:ok:found
f :: mark:c:X:ok:found → mark:c:X:ok:found
mark :: mark:c:X:ok:found → mark:c:X:ok:found
top :: mark:c:X:ok:found → top
c :: mark:c:X:ok:found
check :: mark:c:X:ok:found → mark:c:X:ok:found
start :: mark:c:X:ok:found → mark:c:X:ok:found
match :: mark:c:X:ok:found → mark:c:X:ok:found → mark:c:X:ok:found
X :: mark:c:X:ok:found
proper :: mark:c:X:ok:found → mark:c:X:ok:found
ok :: mark:c:X:ok:found → mark:c:X:ok:found
found :: mark:c:X:ok:found → mark:c:X:ok:found
hole_mark:c:X:ok:found1_0 :: mark:c:X:ok:found
hole_top2_0 :: top
gen_mark:c:X:ok:found3_0 :: Nat → mark:c:X:ok:found

Lemmas:
f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

Generator Equations:
gen_mark:c:X:ok:found3_0(0) ⇔ c
gen_mark:c:X:ok:found3_0(+(x, 1)) ⇔ mark(gen_mark:c:X:ok:found3_0(x))

No more defined symbols left to analyse.

(25) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
f(gen_mark:c:X:ok:found3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)

(26) BOUNDS(n^1, INF)